Skip to content
/ pipedata Public

A framework for building pipelines for data processing

License

Notifications You must be signed in to change notification settings

simw/pipedata

Repository files navigation

pipedata

Chained operations in Python, applied to data processing.

Installation

To install with all optional dependencies:

pip install pipedata[ops]

If you only want the core functionality (building pipelines), and not the data processing applications, then:

pip install pipedata

Examples

Chaining Data Operations

pipedata.ops provides some operations for streaming data through memory.

import json
import zipfile

import pyarrow.parquet as pq

from pipedata.core import Stream
from pipedata.ops import json_records, parquet_writer, zipped_files


data1 = [
    {"col1": 1, "col2": "Hello"},
    {"col1": 2, "col2": "world"},
]
data2 = [
    {"col1": 3, "col2": "!"},
]

with zipfile.ZipFile("test_input.json.zip", "w") as zipped:
    zipped.writestr("file1.json", json.dumps(data1))
    zipped.writestr("file2.json", json.dumps(data2))

result = (
    Stream(["test_input.json.zip"])
    .then(zipped_files)
    .then(json_records())
    .then(parquet_writer("test_output.parquet"))
    .to_list()
)

table = pq.read_table("test_output.parquet")
print(table.to_pydict())
#> {'col1': [1, 2, 3], 'col2': ['Hello', 'world', '!']}

Alternatively, you can construct the pipeline as a chain:

import pyarrow.parquet as pq

from pipedata.core import Chain, Stream
from pipedata.ops import json_records, parquet_writer, zipped_files

# Running this after input file created in above example
chain = (
    Chain()
    .then(zipped_files)
    .then(json_records())
    .then(parquet_writer("test_output_2.parquet"))
)
result = Stream(["test_input.json.zip"]).then(chain).to_list()
table = pq.read_table("test_output_2.parquet")
print(table.to_pydict())
#> {'col1': [1, 2, 3], 'col2': ['Hello', 'world', '!']}

Core Framework

The core framework provides the building blocks for chaining operations.

Running a stream:

from pipedata.core import Stream, ops


result = (
    Stream(range(10))
    .then(ops.filtering(lambda x: x % 2 == 0))
    .then(ops.mapping(lambda x: x ^ 2))
    .then(ops.batched(lambda x: x, 2))
    .to_list()
)
print(result)
#> [(2, 0), (6, 4), (10,)]

Creating a chain and then using it, this time using the pipe notation:

import json
from pipedata.core import Chain, Stream, ops


chain = (
    Chain()
    | ops.filtering(lambda x: x % 2 == 0)
    | ops.mapping(lambda x: x ^ 2)
    | ops.batched(lambda x: sum(x), 2)
)
print(Stream(range(10)).then(chain).to_list())
#> [2, 10, 10]
print(json.dumps(chain.get_counts(), indent=4))
#> [
#>     {
#>         "name": "_identity",
#>         "inputs": 10,
#>         "outputs": 10
#>     },
#>     {
#>         "name": "<lambda>",
#>         "inputs": 10,
#>         "outputs": 5
#>     },
#>     {
#>         "name": "<lambda>",
#>         "inputs": 5,
#>         "outputs": 5
#>     },
#>     {
#>         "name": "<lambda>",
#>         "inputs": 5,
#>         "outputs": 3
#>     }
#> ]

Similar Functionality

About

A framework for building pipelines for data processing

Resources

License

Stars

Watchers

Forks

Packages

No packages published