🚀 Add TensorRT Execution Provider Support in ONNX Runtime Setup #3347
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Description
This PR updates the
setup_ort_session
function ints/torch_handler/base_handler.py
to include support for the TensorRT execution provider in ONNX Runtime. When theTensorrtExecutionProvider
is available, it is prioritized in theproviders
list to enhance inference performance on NVIDIA GPUs.Type of change
Please delete options that are not relevant.
Feature/Issue validation/testing
TensorRT Execution Provider
With the TensorRT execution provider, the ONNX Runtime delivers better inferencing performance on the same hardware compared to generic GPU acceleration.
The TensorRT execution provider in the ONNX Runtime makes use of NVIDIA’s TensorRT Deep Learning inferencing engine to accelerate ONNX model in their family of GPUs. Microsoft and NVIDIA worked closely to integrate the TensorRT execution provider with ONNX Runtime.
Checklist: