Skip to content

google-research/fast-soft-sort

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fast Differentiable Sorting and Ranking

Differentiable sorting and ranking operations in O(n log n).

Dependencies

  • NumPy
  • SciPy
  • Numba
  • Tensorflow (optional)
  • PyTorch (optional)

TensorFlow Example

>>> import tensorflow as tf
>>> from fast_soft_sort.tf_ops import soft_rank, soft_sort
>>> values = tf.convert_to_tensor([[5., 1., 2.], [2., 1., 5.]], dtype=tf.float64)
>>> soft_sort(values, regularization_strength=1.0)
<tf.Tensor: shape=(2, 3), dtype=float64, numpy= array([[1.66666667, 2.66666667, 3.66666667], [1.66666667, 2.66666667, 3.66666667]])>
>>> soft_sort(values, regularization_strength=0.1)
<tf.Tensor: shape=(2, 3), dtype=float64, numpy= array([[1., 2., 5.], [1., 2., 5.]])>
>>> soft_rank(values, regularization_strength=2.0)
<tf.Tensor: shape=(2, 3), dtype=float64, numpy= array([[3. , 1.25, 1.75], [1.75, 1.25, 3. ]])>
>>> soft_rank(values, regularization_strength=1.0)
<tf.Tensor: shape=(2, 3), dtype=float64, numpy= array([[3., 1., 2.], [2., 1., 3.]])>

JAX Example

>>> import jax.numpy as jnp
>>> from fast_soft_sort.jax_ops import soft_rank, soft_sort
>>> values = jnp.array([[5., 1., 2.], [2., 1., 5.]], dtype=jnp.float64)
>>> soft_sort(values, regularization_strength=1.0)
[[1.66666667 2.66666667 3.66666667]
 [1.66666667 2.66666667 3.66666667]]
>>> soft_sort(values, regularization_strength=0.1)
[[1. 2. 5.]
 [1. 2. 5.]]
>>> soft_rank(values, regularization_strength=2.0)
[[3.   1.25 1.75]
 [1.75 1.25 3.  ]]
>>> soft_rank(values, regularization_strength=1.0)
[[3. 1. 2.]
 [2. 1. 3.]]

PyTorch Example

>>> import torch
>>> from pytorch_ops import soft_rank, soft_sort
>>> values = fast_soft_sort.torch.tensor([[5., 1., 2.], [2., 1., 5.]], dtype=torch.float64)
>>> soft_sort(values, regularization_strength=1.0)
tensor([[1.6667, 2.6667, 3.6667]
        [1.6667, 2.6667, 3.6667]], dtype=torch.float64)
>>> soft_sort(values, regularization_strength=0.1)
tensor([[1., 2., 5.]
        [1., 2., 5.]], dtype=torch.float64)
>>> soft_rank(values, regularization_strength=2.0)
tensor([[3.0000, 1.2500, 1.7500],
        [1.7500, 1.2500, 3.0000]], dtype=torch.float64)
>>> soft_rank(values, regularization_strength=1.0)
tensor([[3., 1., 2.]
        [2., 1., 3.]], dtype=torch.float64)

Install

Run python setup.py install or copy the fast_soft_sort/ folder to your project.

Reference

Fast Differentiable Sorting and Ranking Mathieu Blondel, Olivier Teboul, Quentin Berthet, Josip Djolonga In proceedings of ICML 2020 arXiv:2002.08871

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages