Skip to content

anyoptimization/pysamoo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pysamoo - Surrogate-Assisted Multi-objective Optimization

python 3.6 license apache

The software documentation is available here: https://anyoptimization.com/projects/pysamoo/

Installation

The official release is always available at PyPi:

pip install -U pysamoo

Usage

We refer here to our documentation for all the details. However, for instance, executing NSGA2:

from pymoo.optimize import minimize
from pymoo.problems.multi.zdt import ZDT1
from pymoo.visualization.scatter import Scatter
from pysamoo.algorithms.ssansga2 import SSANSGA2

problem = ZDT1(n_var=10)

algorithm = SSANSGA2(n_initial_doe=50,
                     n_infills=10,
                     surr_pop_size=100,
                     surr_n_gen=50)

res = minimize(
    problem,
    algorithm,
    ('n_evals', 200),
    seed=1,
    verbose=True)

plot = Scatter()
plot.add(problem.pareto_front(), plot_type="line", color="black", alpha=0.7)
plot.add(res.F, facecolor="none", edgecolor="red")
plot.show()

Citation

If you use this framework, we kindly ask you to cite the following paper:

@misc{pysamoo,
  title={pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python},
  author={Julian Blank and Kalyanmoy Deb},
  year={2022},
  eprint={2204.05855},
  archivePrefix={arXiv},
  primaryClass={cs.NE}
}

Contact

Feel free to contact me if you have any questions:

Julian Blank (blankjul [at] msu.edu)
Michigan State University
Computational Optimization and Innovation Laboratory (COIN)
East Lansing, MI 48824, USA

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages