Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move out recurrence code #203

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions src/ClassicalOrthogonalPolynomials.jl
Original file line number Diff line number Diff line change
Expand Up @@ -39,8 +39,9 @@ import ContinuumArrays: Basis, Weight, basis_axes, @simplify, Identity, Abstract
AffineQuasiVector, AffineMap, AbstractWeightLayout, AbstractWeightedBasisLayout, WeightedBasisLayout, WeightedBasisLayouts, demap, AbstractBasisLayout, BasisLayout,
checkpoints, weight, unweighted, MappedBasisLayouts, sum_layout, invmap, plan_ldiv, layout_broadcasted, MappedBasisLayout, SubBasisLayout, broadcastbasis_layout,
plan_grid_transform, plan_transform, MAX_PLOT_POINTS, MulPlan, grammatrix, AdjointBasisLayout, grammatrix_layout, plan_transform_layout, _cumsum
import FastTransforms: Λ, forwardrecurrence, forwardrecurrence!, _forwardrecurrence!, clenshaw, clenshaw!,
_forwardrecurrence_next, _clenshaw_next, check_clenshaw_recurrences, ChebyshevGrid, chebyshevpoints, Plan, ScaledPlan, th_cheb2leg
import FastTransforms: Λ, ChebyshevGrid, chebyshevpoints, Plan, ScaledPlan, th_cheb2leg
import RecurrenceRelatioships: forwardrecurrence, forwardrecurrence!, _forwardrecurrence!, clenshaw, clenshaw!,
_forwardrecurrence_next, _clenshaw_next, check_clenshaw_recurrences

import FastGaussQuadrature: jacobimoment

Expand Down
250 changes: 5 additions & 245 deletions src/clenshaw.jl
Original file line number Diff line number Diff line change
@@ -1,26 +1,9 @@

##
# For Chebyshev T. Note the shift in indexing is fine due to the AbstractFill
##
Base.@propagate_inbounds _forwardrecurrence_next(n, A::Vcat{<:Any,1,<:Tuple{<:Number,<:AbstractFill}}, B::Zeros, C::Ones, x, p0, p1) =
_forwardrecurrence_next(n, A.args[2], B, C, x, p0, p1)

Base.@propagate_inbounds _clenshaw_next(n, A::Vcat{<:Any,1,<:Tuple{<:Number,<:AbstractFill}}, B::Zeros, C::Ones, x, c, bn1, bn2) =
_clenshaw_next(n, A.args[2], B, C, x, c, bn1, bn2)

# Assume 1 normalization
_p0(A) = one(eltype(A))

function initiateforwardrecurrence(N, A, B, C, x, μ)
T = promote_type(eltype(A), eltype(B), eltype(C), typeof(x))
p0 = convert(T, μ)
N == 0 && return zero(T), p0
p1 = convert(T, muladd(A[1],x,B[1])*p0)
@inbounds for n = 2:N
p1,p0 = _forwardrecurrence_next(n, A, B, C, x, p0, p1),p1
end
p0,p1
end

for (get, vie) in ((:getindex, :view), (:(Base.unsafe_getindex), :(Base.unsafe_view)))
@eval begin
Expand Down Expand Up @@ -118,228 +101,6 @@ end
Base.@propagate_inbounds getindex(f::Mul{<:WeightedOPLayout,<:AbstractPaddedLayout}, x::Number, j...) =
weight(f.A)[x] * (unweighted(f.A) * f.B)[x, j...]

###
# Operator clenshaw
###


Base.@propagate_inbounds function _clenshaw_next!(n, A::AbstractFill, ::Zeros, C::Ones, x::AbstractMatrix, c, bn1::AbstractMatrix{T}, bn2::AbstractMatrix{T}) where T
muladd!(getindex_value(A), x, bn1, -one(T), bn2)
view(bn2,band(0)) .+= c[n]
bn2
end

Base.@propagate_inbounds function _clenshaw_next!(n, A::AbstractVector, ::Zeros, C::AbstractVector, x::AbstractMatrix, c, bn1::AbstractMatrix{T}, bn2::AbstractMatrix{T}) where T
muladd!(A[n], x, bn1, -C[n+1], bn2)
view(bn2,band(0)) .+= c[n]
bn2
end

Base.@propagate_inbounds function _clenshaw_next!(n, A::AbstractVector, B::AbstractVector, C::AbstractVector, x::AbstractMatrix, c, bn1::AbstractMatrix{T}, bn2::AbstractMatrix{T}) where T
# bn2 .= B[n] .* bn1 .- C[n+1] .* bn2
lmul!(-C[n+1], bn2)
LinearAlgebra.axpy!(B[n], bn1, bn2)
muladd!(A[n], x, bn1, one(T), bn2)
view(bn2,band(0)) .+= c[n]
bn2
end

# Operator * f Clenshaw
Base.@propagate_inbounds function _clenshaw_next!(n, A::AbstractFill, ::Zeros, C::Ones, X::AbstractMatrix, c, f::AbstractVector, bn1::AbstractVector{T}, bn2::AbstractVector{T}) where T
muladd!(getindex_value(A), X, bn1, -one(T), bn2)
bn2 .+= c[n] .* f
bn2
end

Base.@propagate_inbounds function _clenshaw_next!(n, A, ::Zeros, C, X::AbstractMatrix, c, f::AbstractVector, bn1::AbstractVector{T}, bn2::AbstractVector{T}) where T
muladd!(A[n], X, bn1, -C[n+1], bn2)
bn2 .+= c[n] .* f
bn2
end

Base.@propagate_inbounds function _clenshaw_next!(n, A, B, C, X::AbstractMatrix, c, f::AbstractVector, bn1::AbstractVector{T}, bn2::AbstractVector{T}) where T
bn2 .= B[n] .* bn1 .- C[n+1] .* bn2 .+ c[n] .* f
muladd!(A[n], X, bn1, one(T), bn2)
bn2
end

# allow special casing first arg, for ChebyshevT in ClassicalOrthogonalPolynomials
Base.@propagate_inbounds function _clenshaw_first!(A, ::Zeros, C, X, c, bn1, bn2)
muladd!(A[1], X, bn1, -C[2], bn2)
view(bn2,band(0)) .+= c[1]
bn2
end

Base.@propagate_inbounds function _clenshaw_first!(A, B, C, X, c, bn1, bn2)
lmul!(-C[2], bn2)
LinearAlgebra.axpy!(B[1], bn1, bn2)
muladd!(A[1], X, bn1, one(eltype(bn2)), bn2)
view(bn2,band(0)) .+= c[1]
bn2
end

Base.@propagate_inbounds function _clenshaw_first!(A, ::Zeros, C, X, c, f::AbstractVector, bn1, bn2)
muladd!(A[1], X, bn1, -C[2], bn2)
bn2 .+= c[1] .* f
bn2
end

Base.@propagate_inbounds function _clenshaw_first!(A, B, C, X, c, f::AbstractVector, bn1, bn2)
bn2 .= B[1] .* bn1 .- C[2] .* bn2 .+ c[1] .* f
muladd!(A[1], X, bn1, one(eltype(bn2)), bn2)
bn2
end

_clenshaw_op(::AbstractBandedLayout, Z, N) = BandedMatrix(Z, (N-1,N-1))

function clenshaw(c::AbstractVector, A::AbstractVector, B::AbstractVector, C::AbstractVector, X::AbstractMatrix)
N = length(c)
T = promote_type(eltype(c),eltype(A),eltype(B),eltype(C),eltype(X))
@boundscheck check_clenshaw_recurrences(N, A, B, C)
m = size(X,1)
m == size(X,2) || throw(DimensionMismatch("X must be square"))
N == 0 && return zero(T)
bn2 = _clenshaw_op(MemoryLayout(X), Zeros{T}(m, m), N)
bn1 = _clenshaw_op(MemoryLayout(X), c[N]*Eye{T}(m), N)
_clenshaw_op!(c, A, B, C, X, bn1, bn2)
end

function clenshaw(c::AbstractVector, A::AbstractVector, B::AbstractVector, C::AbstractVector, X::AbstractMatrix, f::AbstractVector)
N = length(c)
T = promote_type(eltype(c),eltype(A),eltype(B),eltype(C),eltype(X))
@boundscheck check_clenshaw_recurrences(N, A, B, C)
m = size(X,1)
m == size(X,2) || throw(DimensionMismatch("X must be square"))
m == length(f) || throw(DimensionMismatch("Dimensions must match"))
N == 0 && return [zero(T)]
bn2 = zeros(T,m)
bn1 = Vector{T}(undef,m)
bn1 .= c[N] .* f
_clenshaw_op!(c, A, B, C, X, f, bn1, bn2)
end

function _clenshaw_op!(c, A, B, C, X, bn1, bn2)
N = length(c)
N == 1 && return bn1
@inbounds begin
for n = N-1:-1:2
bn1,bn2 = _clenshaw_next!(n, A, B, C, X, c, bn1, bn2),bn1
end
bn1 = _clenshaw_first!(A, B, C, X, c, bn1, bn2)
end
bn1
end

function _clenshaw_op!(c, A, B, C, X, f::AbstractVector, bn1, bn2)
N = length(c)
N == 1 && return bn1
@inbounds begin
for n = N-1:-1:2
bn1,bn2 = _clenshaw_next!(n, A, B, C, X, c, f, bn1, bn2),bn1
end
bn1 = _clenshaw_first!(A, B, C, X, c, f, bn1, bn2)
end
bn1
end



"""
Clenshaw(a, X)

represents the operator `a(X)` where a is a polynomial.
Here `a` is to stored as a quasi-vector.
"""
struct Clenshaw{T, Coefs<:AbstractVector, AA<:AbstractVector, BB<:AbstractVector, CC<:AbstractVector, Jac<:AbstractMatrix} <: AbstractBandedMatrix{T}
c::Coefs
A::AA
B::BB
C::CC
X::Jac
p0::T
end

Clenshaw(c::AbstractVector{T}, A::AbstractVector, B::AbstractVector, C::AbstractVector, X::AbstractMatrix{T}, p0::T) where T =
Clenshaw{T,typeof(c),typeof(A),typeof(B),typeof(C),typeof(X)}(c, A, B, C, X, p0)

Clenshaw(c::Number, A, B, C, X, p) = Clenshaw([c], A, B, C, X, p)

function Clenshaw(a::AbstractQuasiVector, X::AbstractQuasiMatrix)
P,c = arguments(a)
Clenshaw(paddeddata(c), recurrencecoefficients(P)..., jacobimatrix(X), _p0(P))
end

copy(M::Clenshaw) = M
size(M::Clenshaw) = size(M.X)
axes(M::Clenshaw) = axes(M.X)
bandwidths(M::Clenshaw) = (length(M.c)-1,length(M.c)-1)

Base.array_summary(io::IO, C::Clenshaw{T}, inds::Tuple{Vararg{OneToInf{Int}}}) where T =
print(io, Base.dims2string(length.(inds)), " Clenshaw{$T} with $(length(C.c)) degree polynomial")

struct ClenshawLayout <: AbstractLazyBandedLayout end
MemoryLayout(::Type{<:Clenshaw}) = ClenshawLayout()
sublayout(::ClenshawLayout, ::Type{<:NTuple{2,AbstractUnitRange{Int}}}) = ClenshawLayout()
sublayout(::ClenshawLayout, ::Type{<:Tuple{AbstractUnitRange{Int},Union{Slice,AbstractInfUnitRange{Int}}}}) = LazyBandedLayout()
sublayout(::ClenshawLayout, ::Type{<:Tuple{Union{Slice,AbstractInfUnitRange{Int}},AbstractUnitRange{Int}}}) = LazyBandedLayout()
sublayout(::ClenshawLayout, ::Type{<:Tuple{Union{Slice,AbstractInfUnitRange{Int}},Union{Slice,AbstractInfUnitRange{Int}}}}) = LazyBandedLayout()
sub_materialize(::ClenshawLayout, V) = BandedMatrix(V)

function _BandedMatrix(::ClenshawLayout, V::SubArray{<:Any,2})
M = parent(V)
kr,jr = parentindices(V)
b = bandwidth(M,1)
jkr = max(1,min(first(jr),first(kr))-b÷2):max(last(jr),last(kr))+b÷2
# relationship between jkr and kr, jr
kr2,jr2 = kr.-first(jkr).+1,jr.-first(jkr).+1
lmul!(M.p0, clenshaw(M.c, M.A, M.B, M.C, M.X[jkr, jkr])[kr2,jr2])
end

function getindex(M::Clenshaw{T}, kr::AbstractUnitRange, j::Integer) where T
b = bandwidth(M,1)
jkr = max(1,min(j,first(kr))-b÷2):max(j,last(kr))+b÷2
# relationship between jkr and kr, jr
kr2,j2 = kr.-first(jkr).+1,j-first(jkr)+1
f = [Zeros{T}(j2-1); one(T); Zeros{T}(length(jkr)-j2)]
lmul!(M.p0, clenshaw(M.c, M.A, M.B, M.C, M.X[jkr, jkr], f)[kr2])
end

getindex(M::Clenshaw, k::Int, j::Int) = M[k:k,j][1]

function getindex(S::Symmetric{T,<:Clenshaw}, k::Integer, jr::AbstractUnitRange) where T
m = max(jr.start,jr.stop,k)
return Symmetric(getindex(S.data,1:m,1:m),Symbol(S.uplo))[k,jr]
end
function getindex(S::Symmetric{T,<:Clenshaw}, kr::AbstractUnitRange, j::Integer) where T
m = max(kr.start,kr.stop,j)
return Symmetric(getindex(S.data,1:m,1:m),Symbol(S.uplo))[kr,j]
end
function getindex(S::Symmetric{T,<:Clenshaw}, kr::AbstractUnitRange, jr::AbstractUnitRange) where T
m = max(kr.start,jr.start,kr.stop,jr.stop)
return Symmetric(getindex(S.data,1:m,1:m),Symbol(S.uplo))[kr,jr]
end

transposelayout(M::ClenshawLayout) = LazyBandedMatrices.LazyBandedLayout()
# TODO: generalise for layout, use Base.PermutedDimsArray
Base.permutedims(M::Clenshaw{<:Number}) = transpose(M)


function materialize!(M::MatMulVecAdd{<:ClenshawLayout,<:AbstractPaddedLayout,<:AbstractPaddedLayout})
α,A,x,β,y = M.α,M.A,M.B,M.β,M.C
length(y) == size(A,1) || throw(DimensionMismatch("Dimensions must match"))
length(x) == size(A,2) || throw(DimensionMismatch("Dimensions must match"))
x̃ = paddeddata(x);
m = length(x̃)
b = bandwidth(A,1)
jkr=1:m+b
p = [x̃; zeros(eltype(x̃),length(jkr)-m)];
Ax = lmul!(A.p0, clenshaw(A.c, A.A, A.B, A.C, A.X[jkr, jkr], p))
_fill_lmul!(β,y)
resizedata!(y, last(jkr))
v = view(paddeddata(y),jkr)
LinearAlgebra.axpy!(α, Ax, v)
y
end

# TODO: generalise this to be trait based
function layout_broadcasted(::Tuple{ExpansionLayout{<:AbstractOPLayout},AbstractOPLayout}, ::typeof(*), a, P)
Expand All @@ -366,9 +127,8 @@ function _broadcasted_layout_broadcasted_mul(::Tuple{AbstractWeightLayout,Polyno
a .* P
end


##
# Banded dot is slow
###

LinearAlgebra.dot(x::AbstractVector, A::Clenshaw, y::AbstractVector) = dot(x, mul(A, y))
# constructor for Clenshaw
function Clenshaw(a::AbstractQuasiVector, X::AbstractQuasiMatrix)
P,c = arguments(a)
Clenshaw(paddeddata(c), recurrencecoefficients(P)..., jacobimatrix(X), _p0(P))
end
Loading