-
-
Notifications
You must be signed in to change notification settings - Fork 16.5k
/
benchmarks.py
294 lines (254 loc) Β· 13.8 KB
/
benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Ultralytics YOLOv5 π, AGPL-3.0 license
"""
Run YOLOv5 benchmarks on all supported export formats.
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlpackage
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Usage:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
import argparse
import platform
import sys
import time
from pathlib import Path
import pandas as pd
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd()) # relative
import export
from models.experimental import attempt_load
from models.yolo import SegmentationModel
from segment.val import run as val_seg
from utils import notebook_init
from utils.general import LOGGER, check_yaml, file_size, print_args
from utils.torch_utils import select_device
from val import run as val_det
def run(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
"""
Run YOLOv5 benchmarks on multiple export formats and log results for model performance evaluation.
Args:
weights (Path | str): Path to the model weights file (default: ROOT / "yolov5s.pt").
imgsz (int): Inference size in pixels (default: 640).
batch_size (int): Batch size for inference (default: 1).
data (Path | str): Path to the dataset.yaml file (default: ROOT / "data/coco128.yaml").
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu' (default: "").
half (bool): Use FP16 half-precision inference (default: False).
test (bool): Test export formats only (default: False).
pt_only (bool): Test PyTorch format only (default: False).
hard_fail (bool): Throw an error on benchmark failure if True (default: False).
Returns:
None. Logs information about the benchmark results, including the format, size, mAP50-95, and inference time.
Notes:
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML,
TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js
are unsupported.
Example:
```python
$ python benchmarks.py --weights yolov5s.pt --img 640
```
Usage:
Install required packages:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Run benchmarks:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
y, t = [], time.time()
device = select_device(device)
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
try:
assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
if "cuda" in device.type:
assert gpu, "inference not supported on GPU"
# Export
if f == "-":
w = weights # PyTorch format
else:
w = export.run(
weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
)[-1] # all others
assert suffix in str(w), "export failed"
# Validate
if model_type == SegmentationModel:
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
else: # DetectionModel:
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
speed = result[2][1] # times (preprocess, inference, postprocess)
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
LOGGER.warning(f"WARNING β οΈ Benchmark failure for {name}: {e}")
y.append([name, None, None, None]) # mAP, t_inference
if pt_only and i == 0:
break # break after PyTorch
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
py = pd.DataFrame(y, columns=c)
LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py if map else py.iloc[:, :2]))
if hard_fail and isinstance(hard_fail, str):
metrics = py["mAP50-95"].array # values to compare to floor
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
return py
def test(
weights=ROOT / "yolov5s.pt", # weights path
imgsz=640, # inference size (pixels)
batch_size=1, # batch size
data=ROOT / "data/coco128.yaml", # dataset.yaml path
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
half=False, # use FP16 half-precision inference
test=False, # test exports only
pt_only=False, # test PyTorch only
hard_fail=False, # throw error on benchmark failure
):
"""
Run YOLOv5 export tests for all supported formats and log the results, including export statuses.
Args:
weights (Path | str): Path to the model weights file (.pt format). Default is 'ROOT / "yolov5s.pt"'.
imgsz (int): Inference image size (in pixels). Default is 640.
batch_size (int): Batch size for testing. Default is 1.
data (Path | str): Path to the dataset configuration file (.yaml format). Default is 'ROOT / "data/coco128.yaml"'.
device (str): Device for running the tests, can be 'cpu' or a specific CUDA device ('0', '0,1,2,3', etc.). Default is an empty string.
half (bool): Use FP16 half-precision for inference if True. Default is False.
test (bool): Test export formats only without running inference. Default is False.
pt_only (bool): Test only the PyTorch model if True. Default is False.
hard_fail (bool): Raise error on export or test failure if True. Default is False.
Returns:
pd.DataFrame: DataFrame containing the results of the export tests, including format names and export statuses.
Examples:
```python
$ python benchmarks.py --weights yolov5s.pt --img 640
```
Notes:
Supported export formats and models include PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow
SavedModel, TensorFlow GraphDef, TensorFlow Lite, and TensorFlow Edge TPU. Edge TPU and TF.js are unsupported.
Usage:
Install required packages:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU support
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU support
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
Run export tests:
$ python benchmarks.py --weights yolov5s.pt --img 640
"""
y, t = [], time.time()
device = select_device(device)
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
try:
w = (
weights
if f == "-"
else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
) # weights
assert suffix in str(w), "export failed"
y.append([name, True])
except Exception:
y.append([name, False]) # mAP, t_inference
# Print results
LOGGER.info("\n")
parse_opt()
notebook_init() # print system info
py = pd.DataFrame(y, columns=["Format", "Export"])
LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
LOGGER.info(str(py))
return py
def parse_opt():
"""
Parses command-line arguments for YOLOv5 model inference configuration.
Args:
weights (str): The path to the weights file. Defaults to 'ROOT / "yolov5s.pt"'.
imgsz (int): Inference size in pixels. Defaults to 640.
batch_size (int): Batch size. Defaults to 1.
data (str): Path to the dataset YAML file. Defaults to 'ROOT / "data/coco128.yaml"'.
device (str): CUDA device, e.g., '0' or '0,1,2,3' or 'cpu'. Defaults to an empty string (auto-select).
half (bool): Use FP16 half-precision inference. This is a flag and defaults to False.
test (bool): Test exports only. This is a flag and defaults to False.
pt_only (bool): Test PyTorch only. This is a flag and defaults to False.
hard_fail (bool | str): Throw an error on benchmark failure. Can be a boolean or a string representing a minimum
metric floor, e.g., '0.29'. Defaults to False.
Returns:
argparse.Namespace: Parsed command-line arguments encapsulated in an argparse Namespace object.
Notes:
The function modifies the 'opt.data' by checking and validating the YAML path using 'check_yaml()'.
The parsed arguments are printed for reference using 'print_args()'.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--test", action="store_true", help="test exports only")
parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
print_args(vars(opt))
return opt
def main(opt):
"""
Executes YOLOv5 benchmark tests or main training/inference routines based on the provided command-line arguments.
Args:
opt (argparse.Namespace): Parsed command-line arguments including options for weights, image size, batch size, data
configuration, device, and other flags for inference settings.
Returns:
None: This function does not return any value. It leverages side-effects such as logging and running benchmarks.
Example:
```python
if __name__ == "__main__":
opt = parse_opt()
main(opt)
```
Notes:
- For a complete list of supported export formats and their respective requirements, refer to the
[Ultralytics YOLOv5 Export Formats](https://github.com/ultralytics/yolov5#export-formats).
- Ensure that you have installed all necessary dependencies by following the installation instructions detailed in
the [main repository](https://github.com/ultralytics/yolov5#installation).
```shell
# Running benchmarks on default weights and image size
$ python benchmarks.py --weights yolov5s.pt --img 640
```
"""
test(**vars(opt)) if opt.test else run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)