Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

I get an error when trying to finetune a model: Error(s) in loading state_dict for VitsModel #635

Open
sabexzero opened this issue Oct 29, 2024 · 1 comment

Comments

@sabexzero
Copy link

sabexzero commented Oct 29, 2024

I tried using the checkpoints that you posted in similar tickets, but I still fail
Model: RU, this is a mistake with any speaker

2024-10-29 17:42:46.969285: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-10-29 17:42:47.000764: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-10-29 17:42:47.010368: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-10-29 17:42:47.031678: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-10-29 17:42:48.595751: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
DEBUG:piper_train:Namespace(dataset_dir='/content/drive/MyDrive/colab/piper/VKuksa', checkpoint_epochs=5, quality='high', resume_from_single_speaker_checkpoint=None, logger=True, enable_checkpointing=True, default_root_dir=None, gradient_clip_val=None, gradient_clip_algorithm=None, num_nodes=1, num_processes=None, devices='1', gpus=None, auto_select_gpus=False, tpu_cores=None, ipus=None, enable_progress_bar=True, overfit_batches=0.0, track_grad_norm=-1, check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=None, max_epochs=10000, min_epochs=None, max_steps=-1, min_steps=None, max_time=None, limit_train_batches=None, limit_val_batches=None, limit_test_batches=None, limit_predict_batches=None, val_check_interval=None, log_every_n_steps=1000, accelerator='gpu', strategy=None, sync_batchnorm=False, precision=32, enable_model_summary=True, weights_save_path=None, num_sanity_val_steps=2, resume_from_checkpoint='/content/pretrained.ckpt', profiler=None, benchmark=None, deterministic=None, reload_dataloaders_every_n_epochs=0, auto_lr_find=False, replace_sampler_ddp=True, detect_anomaly=False, auto_scale_batch_size=False, plugins=None, amp_backend='native', amp_level=None, move_metrics_to_cpu=False, multiple_trainloader_mode='max_size_cycle', batch_size=12, validation_split=0.0, num_test_examples=0, max_phoneme_ids=None, hidden_channels=192, inter_channels=192, filter_channels=768, n_layers=6, n_heads=2, seed=1234, num_ckpt=0, save_last=True)
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/connectors/checkpoint_connector.py:52: LightningDeprecationWarning: Setting `Trainer(resume_from_checkpoint=)` is deprecated in v1.5 and will be removed in v1.7. Please pass `Trainer.fit(ckpt_path=)` directly instead.
  rank_zero_deprecation(
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
DEBUG:piper_train:Checkpoints will be saved every 5 epoch(s)
DEBUG:piper_train:0 Checkpoints will be saved
DEBUG:vits.dataset:Loading dataset: /content/drive/MyDrive/colab/piper/VKuksa/dataset.jsonl
/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py:731: LightningDeprecationWarning: `trainer.resume_from_checkpoint` is deprecated in v1.5 and will be removed in v2.0. Specify the fit checkpoint path with `trainer.fit(ckpt_path=)` instead.
  ckpt_path = ckpt_path or self.resume_from_checkpoint
Missing logger folder: /content/drive/MyDrive/colab/piper/VKuksa/lightning_logs
Restoring states from the checkpoint path at /content/pretrained.ckpt
DEBUG:fsspec.local:open file: /content/pretrained.ckpt
Traceback (most recent call last):
  File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
    exec(code, run_globals)
  File "/content/piper/src/python/piper_train/__main__.py", line 173, in <module>
    main()
  File "/content/piper/src/python/piper_train/__main__.py", line 150, in main
    trainer.fit(model)
  File "/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py", line 696, in fit
    self._call_and_handle_interrupt(
  File "/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py", line 650, in _call_and_handle_interrupt
    return trainer_fn(*args, **kwargs)
  File "/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py", line 735, in _fit_impl
    results = self._run(model, ckpt_path=self.ckpt_path)
  File "/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py", line 1110, in _run
    self._restore_modules_and_callbacks(ckpt_path)
  File "/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/trainer.py", line 1065, in _restore_modules_and_callbacks
    self._checkpoint_connector.restore_model()
  File "/usr/local/lib/python3.10/dist-packages/pytorch_lightning/trainer/connectors/checkpoint_connector.py", line 182, in restore_model
    self.trainer.strategy.load_model_state_dict(self._loaded_checkpoint)
  File "/usr/local/lib/python3.10/dist-packages/pytorch_lightning/strategies/strategy.py", line 343, in load_model_state_dict
    self.lightning_module.load_state_dict(checkpoint["state_dict"])
  File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1667, in load_state_dict
    raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for VitsModel:
	Missing key(s) in state_dict: "model_g.dec.ups.3.bias", "model_g.dec.ups.3.weight_g", "model_g.dec.ups.3.weight_v", "model_g.dec.resblocks.0.convs1.0.bias", "model_g.dec.resblocks.0.convs1.0.weight_g", "model_g.dec.resblocks.0.convs1.0.weight_v", "model_g.dec.resblocks.0.convs1.1.bias", "model_g.dec.resblocks.0.convs1.1.weight_g", "model_g.dec.resblocks.0.convs1.1.weight_v", "model_g.dec.resblocks.0.convs1.2.bias", "model_g.dec.resblocks.0.convs1.2.weight_g", "model_g.dec.resblocks.0.convs1.2.weight_v", "model_g.dec.resblocks.0.convs2.0.bias", "model_g.dec.resblocks.0.convs2.0.weight_g", "model_g.dec.resblocks.0.convs2.0.weight_v", "model_g.dec.resblocks.0.convs2.1.bias", "model_g.dec.resblocks.0.convs2.1.weight_g", "model_g.dec.resblocks.0.convs2.1.weight_v", "model_g.dec.resblocks.0.convs2.2.bias", "model_g.dec.resblocks.0.convs2.2.weight_g", "model_g.dec.resblocks.0.convs2.2.weight_v", "model_g.dec.resblocks.1.convs1.0.bias", "model_g.dec.resblocks.1.convs1.0.weight_g", "model_g.dec.resblocks.1.convs1.0.weight_v", "model_g.dec.resblocks.1.convs1.1.bias", "model_g.dec.resblocks.1.convs1.1.weight_g", "model_g.dec.resblocks.1.convs1.1.weight_v", "model_g.dec.resblocks.1.convs1.2.bias", "model_g.dec.resblocks.1.convs1.2.weight_g", "model_g.dec.resblocks.1.convs1.2.weight_v", "model_g.dec.resblocks.1.convs2.0.bias", "model_g.dec.resblocks.1.convs2.0.weight_g", "model_g.dec.resblocks.1.convs2.0.weight_v", "model_g.dec.resblocks.1.convs2.1.bias", "model_g.dec.resblocks.1.convs2.1.weight_g", "model_g.dec.resblocks.1.convs2.1.weight_v", "model_g.dec.resblocks.1.convs2.2.bias", "model_g.dec.resblocks.1.convs2.2.weight_g", "model_g.dec.resblocks.1.convs2.2.weight_v", "model_g.dec.resblocks.2.convs1.0.bias", "model_g.dec.resblocks.2.convs1.0.weight_g", "model_g.dec.resblocks.2.convs1.0.weight_v", "model_g.dec.resblocks.2.convs1.1.bias", "model_g.dec.resblocks.2.convs1.1.weight_g", "model_g.dec.resblocks.2.convs1.1.weight_v", "model_g.dec.resblocks.2.convs1.2.bias", "model_g.dec.resblocks.2.convs1.2.weight_g", "model_g.dec.resblocks.2.convs1.2.weight_v", "model_g.dec.resblocks.2.convs2.0.bias", "model_g.dec.resblocks.2.convs2.0.weight_g", "model_g.dec.resblocks.2.convs2.0.weight_v", "model_g.dec.resblocks.2.convs2.1.bias", "model_g.dec.resblocks.2.convs2.1.weight_g", "model_g.dec.resblocks.2.convs2.1.weight_v", "model_g.dec.resblocks.2.convs2.2.bias", "model_g.dec.resblocks.2.convs2.2.weight_g", "model_g.dec.resblocks.2.convs2.2.weight_v", "model_g.dec.resblocks.3.convs1.0.bias", "model_g.dec.resblocks.3.convs1.0.weight_g", "model_g.dec.resblocks.3.convs1.0.weight_v", "model_g.dec.resblocks.3.convs1.1.bias", "model_g.dec.resblocks.3.convs1.1.weight_g", "model_g.dec.resblocks.3.convs1.1.weight_v", "model_g.dec.resblocks.3.convs1.2.bias", "model_g.dec.resblocks.3.convs1.2.weight_g", "model_g.dec.resblocks.3.convs1.2.weight_v", "model_g.dec.resblocks.3.convs2.0.bias", "model_g.dec.resblocks.3.convs2.0.weight_g", "model_g.dec.resblocks.3.convs2.0.weight_v", "model_g.dec.resblocks.3.convs2.1.bias", "model_g.dec.resblocks.3.convs2.1.weight_g", "model_g.dec.resblocks.3.convs2.1.weight_v", "model_g.dec.resblocks.3.convs2.2.bias", "model_g.dec.resblocks.3.convs2.2.weight_g", "model_g.dec.resblocks.3.convs2.2.weight_v", "model_g.dec.resblocks.4.convs1.0.bias", "model_g.dec.resblocks.4.convs1.0.weight_g", "model_g.dec.resblocks.4.convs1.0.weight_v", "model_g.dec.resblocks.4.convs1.1.bias", "model_g.dec.resblocks.4.convs1.1.weight_g", "model_g.dec.resblocks.4.convs1.1.weight_v", "model_g.dec.resblocks.4.convs1.2.bias", "model_g.dec.resblocks.4.convs1.2.weight_g", "model_g.dec.resblocks.4.convs1.2.weight_v", "model_g.dec.resblocks.4.convs2.0.bias", "model_g.dec.resblocks.4.convs2.0.weight_g", "model_g.dec.resblocks.4.convs2.0.weight_v", "model_g.dec.resblocks.4.convs2.1.bias", "model_g.dec.resblocks.4.convs2.1.weight_g", "model_g.dec.resblocks.4.convs2.1.weight_v", "model_g.dec.resblocks.4.convs2.2.bias", "model_g.dec.resblocks.4.convs2.2.weight_g", "model_g.dec.resblocks.4.convs2.2.weight_v", "model_g.dec.resblocks.5.convs1.0.bias", "model_g.dec.resblocks.5.convs1.0.weight_g", "model_g.dec.resblocks.5.convs1.0.weight_v", "model_g.dec.resblocks.5.convs1.1.bias", "model_g.dec.resblocks.5.convs1.1.weight_g", "model_g.dec.resblocks.5.convs1.1.weight_v", "model_g.dec.resblocks.5.convs1.2.bias", "model_g.dec.resblocks.5.convs1.2.weight_g", "model_g.dec.resblocks.5.convs1.2.weight_v", "model_g.dec.resblocks.5.convs2.0.bias", "model_g.dec.resblocks.5.convs2.0.weight_g", "model_g.dec.resblocks.5.convs2.0.weight_v", "model_g.dec.resblocks.5.convs2.1.bias", "model_g.dec.resblocks.5.convs2.1.weight_g", "model_g.dec.resblocks.5.convs2.1.weight_v", "model_g.dec.resblocks.5.convs2.2.bias", "model_g.dec.resblocks.5.convs2.2.weight_g", "model_g.dec.resblocks.5.convs2.2.weight_v", "model_g.dec.resblocks.6.convs1.0.bias", "model_g.dec.resblocks.6.convs1.0.weight_g", "model_g.dec.resblocks.6.convs1.0.weight_v", "model_g.dec.resblocks.6.convs1.1.bias", "model_g.dec.resblocks.6.convs1.1.weight_g", "model_g.dec.resblocks.6.convs1.1.weight_v", "model_g.dec.resblocks.6.convs1.2.bias", "model_g.dec.resblocks.6.convs1.2.weight_g", "model_g.dec.resblocks.6.convs1.2.weight_v", "model_g.dec.resblocks.6.convs2.0.bias", "model_g.dec.resblocks.6.convs2.0.weight_g", "model_g.dec.resblocks.6.convs2.0.weight_v", "model_g.dec.resblocks.6.convs2.1.bias", "model_g.dec.resblocks.6.convs2.1.weight_g", "model_g.dec.resblocks.6.convs2.1.weight_v", "model_g.dec.resblocks.6.convs2.2.bias", "model_g.dec.resblocks.6.convs2.2.weight_g", "model_g.dec.resblocks.6.convs2.2.weight_v", "model_g.dec.resblocks.7.convs1.0.bias", "model_g.dec.resblocks.7.convs1.0.weight_g", "model_g.dec.resblocks.7.convs1.0.weight_v", "model_g.dec.resblocks.7.convs1.1.bias", "model_g.dec.resblocks.7.convs1.1.weight_g", "model_g.dec.resblocks.7.convs1.1.weight_v", "model_g.dec.resblocks.7.convs1.2.bias", "model_g.dec.resblocks.7.convs1.2.weight_g", "model_g.dec.resblocks.7.convs1.2.weight_v", "model_g.dec.resblocks.7.convs2.0.bias", "model_g.dec.resblocks.7.convs2.0.weight_g", "model_g.dec.resblocks.7.convs2.0.weight_v", "model_g.dec.resblocks.7.convs2.1.bias", "model_g.dec.resblocks.7.convs2.1.weight_g", "model_g.dec.resblocks.7.convs2.1.weight_v", "model_g.dec.resblocks.7.convs2.2.bias", "model_g.dec.resblocks.7.convs2.2.weight_g", "model_g.dec.resblocks.7.convs2.2.weight_v", "model_g.dec.resblocks.8.convs1.0.bias", "model_g.dec.resblocks.8.convs1.0.weight_g", "model_g.dec.resblocks.8.convs1.0.weight_v", "model_g.dec.resblocks.8.convs1.1.bias", "model_g.dec.resblocks.8.convs1.1.weight_g", "model_g.dec.resblocks.8.convs1.1.weight_v", "model_g.dec.resblocks.8.convs1.2.bias", "model_g.dec.resblocks.8.convs1.2.weight_g", "model_g.dec.resblocks.8.convs1.2.weight_v", "model_g.dec.resblocks.8.convs2.0.bias", "model_g.dec.resblocks.8.convs2.0.weight_g", "model_g.dec.resblocks.8.convs2.0.weight_v", "model_g.dec.resblocks.8.convs2.1.bias", "model_g.dec.resblocks.8.convs2.1.weight_g", "model_g.dec.resblocks.8.convs2.1.weight_v", "model_g.dec.resblocks.8.convs2.2.bias", "model_g.dec.resblocks.8.convs2.2.weight_g", "model_g.dec.resblocks.8.convs2.2.weight_v", "model_g.dec.resblocks.9.convs1.0.bias", "model_g.dec.resblocks.9.convs1.0.weight_g", "model_g.dec.resblocks.9.convs1.0.weight_v", "model_g.dec.resblocks.9.convs1.1.bias", "model_g.dec.resblocks.9.convs1.1.weight_g", "model_g.dec.resblocks.9.convs1.1.weight_v", "model_g.dec.resblocks.9.convs1.2.bias", "model_g.dec.resblocks.9.convs1.2.weight_g", "model_g.dec.resblocks.9.convs1.2.weight_v", "model_g.dec.resblocks.9.convs2.0.bias", "model_g.dec.resblocks.9.convs2.0.weight_g", "model_g.dec.resblocks.9.convs2.0.weight_v", "model_g.dec.resblocks.9.convs2.1.bias", "model_g.dec.resblocks.9.convs2.1.weight_g", "model_g.dec.resblocks.9.convs2.1.weight_v", "model_g.dec.resblocks.9.convs2.2.bias", "model_g.dec.resblocks.9.convs2.2.weight_g", "model_g.dec.resblocks.9.convs2.2.weight_v", "model_g.dec.resblocks.10.convs1.0.bias", "model_g.dec.resblocks.10.convs1.0.weight_g", "model_g.dec.resblocks.10.convs1.0.weight_v", "model_g.dec.resblocks.10.convs1.1.bias", "model_g.dec.resblocks.10.convs1.1.weight_g", "model_g.dec.resblocks.10.convs1.1.weight_v", "model_g.dec.resblocks.10.convs1.2.bias", "model_g.dec.resblocks.10.convs1.2.weight_g", "model_g.dec.resblocks.10.convs1.2.weight_v", "model_g.dec.resblocks.10.convs2.0.bias", "model_g.dec.resblocks.10.convs2.0.weight_g", "model_g.dec.resblocks.10.convs2.0.weight_v", "model_g.dec.resblocks.10.convs2.1.bias", "model_g.dec.resblocks.10.convs2.1.weight_g", "model_g.dec.resblocks.10.convs2.1.weight_v", "model_g.dec.resblocks.10.convs2.2.bias", "model_g.dec.resblocks.10.convs2.2.weight_g", "model_g.dec.resblocks.10.convs2.2.weight_v", "model_g.dec.resblocks.11.convs1.0.bias", "model_g.dec.resblocks.11.convs1.0.weight_g", "model_g.dec.resblocks.11.convs1.0.weight_v", "model_g.dec.resblocks.11.convs1.1.bias", "model_g.dec.resblocks.11.convs1.1.weight_g", "model_g.dec.resblocks.11.convs1.1.weight_v", "model_g.dec.resblocks.11.convs1.2.bias", "model_g.dec.resblocks.11.convs1.2.weight_g", "model_g.dec.resblocks.11.convs1.2.weight_v", "model_g.dec.resblocks.11.convs2.0.bias", "model_g.dec.resblocks.11.convs2.0.weight_g", "model_g.dec.resblocks.11.convs2.0.weight_v", "model_g.dec.resblocks.11.convs2.1.bias", "model_g.dec.resblocks.11.convs2.1.weight_g", "model_g.dec.resblocks.11.convs2.1.weight_v", "model_g.dec.resblocks.11.convs2.2.bias", "model_g.dec.resblocks.11.convs2.2.weight_g", "model_g.dec.resblocks.11.convs2.2.weight_v". 
	Unexpected key(s) in state_dict: "model_g.dec.resblocks.0.convs.0.bias", "model_g.dec.resblocks.0.convs.0.weight_g", "model_g.dec.resblocks.0.convs.0.weight_v", "model_g.dec.resblocks.0.convs.1.bias", "model_g.dec.resblocks.0.convs.1.weight_g", "model_g.dec.resblocks.0.convs.1.weight_v", "model_g.dec.resblocks.1.convs.0.bias", "model_g.dec.resblocks.1.convs.0.weight_g", "model_g.dec.resblocks.1.convs.0.weight_v", "model_g.dec.resblocks.1.convs.1.bias", "model_g.dec.resblocks.1.convs.1.weight_g", "model_g.dec.resblocks.1.convs.1.weight_v", "model_g.dec.resblocks.2.convs.0.bias", "model_g.dec.resblocks.2.convs.0.weight_g", "model_g.dec.resblocks.2.convs.0.weight_v", "model_g.dec.resblocks.2.convs.1.bias", "model_g.dec.resblocks.2.convs.1.weight_g", "model_g.dec.resblocks.2.convs.1.weight_v", "model_g.dec.resblocks.3.convs.0.bias", "model_g.dec.resblocks.3.convs.0.weight_g", "model_g.dec.resblocks.3.convs.0.weight_v", "model_g.dec.resblocks.3.convs.1.bias", "model_g.dec.resblocks.3.convs.1.weight_g", "model_g.dec.resblocks.3.convs.1.weight_v", "model_g.dec.resblocks.4.convs.0.bias", "model_g.dec.resblocks.4.convs.0.weight_g", "model_g.dec.resblocks.4.convs.0.weight_v", "model_g.dec.resblocks.4.convs.1.bias", "model_g.dec.resblocks.4.convs.1.weight_g", "model_g.dec.resblocks.4.convs.1.weight_v", "model_g.dec.resblocks.5.convs.0.bias", "model_g.dec.resblocks.5.convs.0.weight_g", "model_g.dec.resblocks.5.convs.0.weight_v", "model_g.dec.resblocks.5.convs.1.bias", "model_g.dec.resblocks.5.convs.1.weight_g", "model_g.dec.resblocks.5.convs.1.weight_v", "model_g.dec.resblocks.6.convs.0.bias", "model_g.dec.resblocks.6.convs.0.weight_g", "model_g.dec.resblocks.6.convs.0.weight_v", "model_g.dec.resblocks.6.convs.1.bias", "model_g.dec.resblocks.6.convs.1.weight_g", "model_g.dec.resblocks.6.convs.1.weight_v", "model_g.dec.resblocks.7.convs.0.bias", "model_g.dec.resblocks.7.convs.0.weight_g", "model_g.dec.resblocks.7.convs.0.weight_v", "model_g.dec.resblocks.7.convs.1.bias", "model_g.dec.resblocks.7.convs.1.weight_g", "model_g.dec.resblocks.7.convs.1.weight_v", "model_g.dec.resblocks.8.convs.0.bias", "model_g.dec.resblocks.8.convs.0.weight_g", "model_g.dec.resblocks.8.convs.0.weight_v", "model_g.dec.resblocks.8.convs.1.bias", "model_g.dec.resblocks.8.convs.1.weight_g", "model_g.dec.resblocks.8.convs.1.weight_v". 
	size mismatch for model_g.dec.conv_pre.weight: copying a param with shape torch.Size([256, 192, 7]) from checkpoint, the shape in current model is torch.Size([512, 192, 7]).
	size mismatch for model_g.dec.conv_pre.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]).
	size mismatch for model_g.dec.ups.0.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]).
	size mismatch for model_g.dec.ups.0.weight_g: copying a param with shape torch.Size([256, 1, 1]) from checkpoint, the shape in current model is torch.Size([512, 1, 1]).
	size mismatch for model_g.dec.ups.0.weight_v: copying a param with shape torch.Size([256, 128, 16]) from checkpoint, the shape in current model is torch.Size([512, 256, 16]).
	size mismatch for model_g.dec.ups.1.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
	size mismatch for model_g.dec.ups.1.weight_g: copying a param with shape torch.Size([128, 1, 1]) from checkpoint, the shape in current model is torch.Size([256, 1, 1]).
	size mismatch for model_g.dec.ups.1.weight_v: copying a param with shape torch.Size([128, 64, 16]) from checkpoint, the shape in current model is torch.Size([256, 128, 16]).
	size mismatch for model_g.dec.ups.2.bias: copying a param with shape torch.Size([32]) from checkpoint, the shape in current model is torch.Size([64]).
	size mismatch for model_g.dec.ups.2.weight_g: copying a param with shape torch.Size([64, 1, 1]) from checkpoint, the shape in current model is torch.Size([128, 1, 1]).
	size mismatch for model_g.dec.ups.2.weight_v: copying a param with shape torch.Size([64, 32, 8]) from checkpoint, the shape in current model is torch.Size([128, 64, 4]).
@dokempf
Copy link

dokempf commented Dec 17, 2024

Are you trying to finetune a model of quality high without passing --quality high to the training? This solved this one for me (only to be stuck on the next thing, currently)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants