Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Loading .tfrecords files that require a deserialization method #1201

Open
fteufel opened this issue Sep 26, 2023 · 1 comment
Open

Loading .tfrecords files that require a deserialization method #1201

fteufel opened this issue Sep 26, 2023 · 1 comment

Comments

@fteufel
Copy link

fteufel commented Sep 26, 2023

🐛 Describe the bug

Hi,

I have a dataset in TFRecords format and am trying to move to TorchData's API for loading tfrecords files.
This is the minimal example:

datapipe1 = IterableWrapper(['path/to/my/tfrecords/file.tfrecords'])
datapipe2 = FileOpener(datapipe1, mode="b")
tfrecord_loader_dp = datapipe2.load_from_tfrecord()

for d in tfrecord_loader_dp:
   pass

It fails, as the datapipe does not know how to properly deserialize the tfrecord file.

File ~/.conda/envs/bend/lib/python3.10/site-packages/torchdata/datapipes/iter/util/tfrecordloader.py:245, in TFRecordLoaderIterDataPipe.__iter__(self)
    243 pathname, data_stream = data
    244 try:
--> 245     for example_bytes in iterate_tfrecord_file(data_stream):
    246         example = example_pb2.SequenceExample()  # type: ignore
    247         example.ParseFromString(example_bytes)  # type: ignore

File ~/.conda/envs/bend/lib/python3.10/site-packages/torchdata/datapipes/iter/util/tfrecordloader.py:83, in iterate_tfrecord_file(data)
     81 (length,) = struct.unpack("<Q", length_bytes)
     82 if length > len(data_bytes):
---> 83     data_bytes = data_bytes.zfill(int(length * 1.5))
     84 data_bytes_view = memoryview(data_bytes)[:length]
     85 if data.readinto(data_bytes_view) != length:

OverflowError: Python int too large to convert to C ssize_t
This exception is thrown by __iter__ of TFRecordLoaderIterDataPipe(datapipe=FileOpenerIterDataPipe, length=-1, spec=None)

In the legacy tensorflow codebase, I would have to specify a function to deserialize the tfrecord, by doing

import tensorflow as tf
import tensorflow_datasets as tfds

dataset = tf.data.Dataset.from_tensor_slices(['path/to/my/tfrecords/file.tfrecords'])
dataset = dataset.interleave(lambda fp: tf.data.TFRecordDataset(fp, compression_type=compression_type), cycle_length=1, block_length=1, num_parallel_calls=tf.data.AUTOTUNE)

features = tfds.features.FeaturesDict.from_json(json.load(json_file)) # this file contains info about the .tfrecords file i'm trying to load
dataset = dataset.map(features.deserialize_example, num_parallel_calls=tf.data.AUTOTUNE)

iterator = dataset.as_numpy_iterator()
for d in iterator:
    pass #this works, returning a dict of tf tensors

The problem is basically that I have to deserialize the tfrecord, but I can't apply anything to the TFRecordLoaderIterDataPipe before it fails.

Is there a workaround? I tried just wrapping the tensorflow dataset object in an IterableWrapper, but the tensorflow dataset can't be pickled so fails in DataLoader2.

Thanks!

Versions

Collecting environment information...
PyTorch version: 2.0.1+cu117
Is debug build: False
CUDA used to build PyTorch: 11.7
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.5 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.27.4
Libc version: glibc-2.31

Python version: 3.10.12 (main, Jul 5 2023, 18:54:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1027-aws-x86_64-with-glibc2.31
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
Stepping: 7
CPU MHz: 2499.994
BogoMIPS: 4999.98
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 256 KiB
L1i cache: 256 KiB
L2 cache: 8 MiB
L3 cache: 35.8 MiB
NUMA node0 CPU(s): 0-15
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Vulnerable
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke

Versions of relevant libraries:
[pip3] numpy==1.24.3
[pip3] torch==2.0.1
[pip3] torchdata==0.6.1
[pip3] torchvision==0.15.2
[pip3] triton==2.0.0
[conda] numpy 1.24.3 pypi_0 pypi
[conda] torch 2.0.1 pypi_0 pypi
[conda] torchdata 0.6.1 pypi_0 pypi
[conda] torchvision 0.15.2 pypi_0 pypi
[conda] triton 2.0.0 pypi_0 pypi

@AdityaMayukhSom
Copy link

I think dataloader and datapipes are going to be removed in future, but in the meantime, are there any workarounds?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants