You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
It fails, as the datapipe does not know how to properly deserialize the tfrecord file.
File ~/.conda/envs/bend/lib/python3.10/site-packages/torchdata/datapipes/iter/util/tfrecordloader.py:245, in TFRecordLoaderIterDataPipe.__iter__(self)
243 pathname, data_stream = data
244 try:
--> 245 for example_bytes in iterate_tfrecord_file(data_stream):
246 example = example_pb2.SequenceExample() # type: ignore
247 example.ParseFromString(example_bytes) # type: ignore
File ~/.conda/envs/bend/lib/python3.10/site-packages/torchdata/datapipes/iter/util/tfrecordloader.py:83, in iterate_tfrecord_file(data)
81 (length,) = struct.unpack("<Q", length_bytes)
82 if length > len(data_bytes):
---> 83 data_bytes = data_bytes.zfill(int(length * 1.5))
84 data_bytes_view = memoryview(data_bytes)[:length]
85 if data.readinto(data_bytes_view) != length:
OverflowError: Python int too large to convert to C ssize_t
This exception is thrown by __iter__ of TFRecordLoaderIterDataPipe(datapipe=FileOpenerIterDataPipe, length=-1, spec=None)
In the legacy tensorflow codebase, I would have to specify a function to deserialize the tfrecord, by doing
importtensorflowastfimporttensorflow_datasetsastfdsdataset=tf.data.Dataset.from_tensor_slices(['path/to/my/tfrecords/file.tfrecords'])
dataset=dataset.interleave(lambdafp: tf.data.TFRecordDataset(fp, compression_type=compression_type), cycle_length=1, block_length=1, num_parallel_calls=tf.data.AUTOTUNE)
features=tfds.features.FeaturesDict.from_json(json.load(json_file)) # this file contains info about the .tfrecords file i'm trying to loaddataset=dataset.map(features.deserialize_example, num_parallel_calls=tf.data.AUTOTUNE)
iterator=dataset.as_numpy_iterator()
fordiniterator:
pass#this works, returning a dict of tf tensors
The problem is basically that I have to deserialize the tfrecord, but I can't apply anything to the TFRecordLoaderIterDataPipe before it fails.
Is there a workaround? I tried just wrapping the tensorflow dataset object in an IterableWrapper, but the tensorflow dataset can't be pickled so fails in DataLoader2.
Thanks!
Versions
Collecting environment information...
PyTorch version: 2.0.1+cu117
Is debug build: False
CUDA used to build PyTorch: 11.7
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.5 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.27.4
Libc version: glibc-2.31
Python version: 3.10.12 (main, Jul 5 2023, 18:54:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1027-aws-x86_64-with-glibc2.31
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
Stepping: 7
CPU MHz: 2499.994
BogoMIPS: 4999.98
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 256 KiB
L1i cache: 256 KiB
L2 cache: 8 MiB
L3 cache: 35.8 MiB
NUMA node0 CPU(s): 0-15
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Vulnerable
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke
🐛 Describe the bug
Hi,
I have a dataset in TFRecords format and am trying to move to TorchData's API for loading tfrecords files.
This is the minimal example:
It fails, as the datapipe does not know how to properly deserialize the tfrecord file.
In the legacy tensorflow codebase, I would have to specify a function to deserialize the tfrecord, by doing
The problem is basically that I have to deserialize the tfrecord, but I can't apply anything to the
TFRecordLoaderIterDataPipe
before it fails.Is there a workaround? I tried just wrapping the tensorflow dataset object in an
IterableWrapper
, but the tensorflow dataset can't be pickled so fails inDataLoader2
.Thanks!
Versions
Collecting environment information...
PyTorch version: 2.0.1+cu117
Is debug build: False
CUDA used to build PyTorch: 11.7
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.5 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.27.4
Libc version: glibc-2.31
Python version: 3.10.12 (main, Jul 5 2023, 18:54:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1027-aws-x86_64-with-glibc2.31
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
Stepping: 7
CPU MHz: 2499.994
BogoMIPS: 4999.98
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 256 KiB
L1i cache: 256 KiB
L2 cache: 8 MiB
L3 cache: 35.8 MiB
NUMA node0 CPU(s): 0-15
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Vulnerable
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke
Versions of relevant libraries:
[pip3] numpy==1.24.3
[pip3] torch==2.0.1
[pip3] torchdata==0.6.1
[pip3] torchvision==0.15.2
[pip3] triton==2.0.0
[conda] numpy 1.24.3 pypi_0 pypi
[conda] torch 2.0.1 pypi_0 pypi
[conda] torchdata 0.6.1 pypi_0 pypi
[conda] torchvision 0.15.2 pypi_0 pypi
[conda] triton 2.0.0 pypi_0 pypi
The text was updated successfully, but these errors were encountered: