Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Video reading: torchaudio.io.StreamReader seek method returns the first frame, regardless of the input start_timestep (on version 0.13.1) #3813

Open
StolikTomer opened this issue Jul 20, 2024 · 0 comments

Comments

@StolikTomer
Copy link

🐛 Describe the bug

Using this code:

        import torch
        from torchaudio.io import StreamReader

        video_path = <my_local_path>

        stream_reader = StreamReader(video_path)
        stream_reader.add_video_stream(5, decoder= 'h264_cuvid', hw_accel='cuda')

        start_timestep = 10
        stream_reader.seek(start_timestep)
        for (chunk, ) in stream_reader.stream():
            for frame in chunk:
                yield frame

The seek method is ignored. The resulting video iterator always starts with the 0 starting frame.

Versions

Collecting environment information...

CUDA runtime version: 11.7.99
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A10G
Nvidia driver version: 555.42.02
cuDNN version: Probably one of the following:
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.6.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R32
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
Stepping: 0
BogoMIPS: 5599.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 128 KiB (4 instances)
L1i cache: 128 KiB (4 instances)
L2 cache: 2 MiB (4 instances)
L3 cache: 16 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-7
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.23.5
[pip3] onnx==1.16.0
[pip3] onnx-graphsurgeon==0.5.2
[pip3] pytorch-lightning==1.9.4
[pip3] pytorch3d==0.7.2
[pip3] torch==1.13.1+cu117
[pip3] torch-tensorrt==1.3.0
[pip3] torchaudio==0.13.1+cu117
[pip3] torchmetrics==1.3.2
[pip3] torchvision==0.14.1+cu117
[pip3] triton==2.3.0
[conda] numpy

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant