From c062dd23dbce3e2108e1c3d2705fc323f03fdad3 Mon Sep 17 00:00:00 2001 From: Marcello Seri Date: Tue, 19 Dec 2023 22:21:14 +0100 Subject: [PATCH] fixes Signed-off-by: Marcello Seri --- 4-cotangentbdl.tex | 23 ++++++++++++----------- 6-differentiaforms.tex | 4 ++-- 2 files changed, 14 insertions(+), 13 deletions(-) diff --git a/4-cotangentbdl.tex b/4-cotangentbdl.tex index 4c98644..3589d10 100644 --- a/4-cotangentbdl.tex +++ b/4-cotangentbdl.tex @@ -364,6 +364,7 @@ \section{One-forms and the cotangent bundle} \end{exercise} Exercise~\ref{ex:propdiff} is particularly interesting if we look at it in relation to the pushforward. +In particular, the first statement in Theorem~\ref{thm:liealgiso} can be rewritten as follows. \begin{proposition} Let $F:M\to N$ be a diffeomorphism and $X\in\fX(M)$. Then, for any $f\in C^\infty(N)$, @@ -371,17 +372,17 @@ \section{One-forms and the cotangent bundle} X(F^* f) = F_*X(f) \circ F. \end{equation} \end{proposition} -\begin{proof} - Indeed, for any $p\in M$, - \begin{align} - F_*X(f) \circ F(p) & = ((F_*X) f) (F(p)) = (F_*X)_{F(p)} f \\ - & = (dF \circ X \circ F^{-1})(F(p)) f = (dF\circ X)(p) f \\ - & = dF_p(X_p) f, \\ - X (F^*f)(p) & = X(f\circ F)(p) = X_p(f\circ F) = dF_p(X_p) f \\ - % &= d (f\circ F) \circ X = df \circ dF \circ X \\ - % & = df \circ F_* X \circ F = F_* X (f) \circ F. - \end{align} -\end{proof} +% \begin{proof} +% Indeed, for any $p\in M$, +% \begin{align} +% F_*X(f) \circ F(p) & = ((F_*X) f) (F(p)) = (F_*X)_{F(p)} f \\ +% & = (dF \circ X \circ F^{-1})(F(p)) f = (dF\circ X)(p) f \\ +% & = dF_p(X_p) f, \\ +% X (F^*f)(p) & = X(f\circ F)(p) = X_p(f\circ F) = dF_p(X_p) f \\ +% % &= d (f\circ F) \circ X = df \circ dF \circ X \\ +% % & = df \circ F_* X \circ F = F_* X (f) \circ F. +% \end{align} +% \end{proof} In this case you often say that the vector fields are $F$-related\footnote{This is a definition that can be properly formalized, but we will not spend any time on it in during the course.} or that they behave naturally: you can either pull back the function $f$ to $M$ or push forward the vector field $X$ to $N$. \begin{exercise} diff --git a/6-differentiaforms.tex b/6-differentiaforms.tex index c8b0efd..f145923 100644 --- a/6-differentiaforms.tex +++ b/6-differentiaforms.tex @@ -619,10 +619,10 @@ \section{Exterior derivative} \end{exercise} \begin{exercise}\label{exe:symplectic} - Let $V$ a vector space of dimension $k$. + Let $V$ be a vector space of dimension $k$. A symplectic form on $V$ is an element $\omega\in\Lambda^2(V)$ which is non-degenerate in the sense that $\iota_v(\omega) = 0$ if and only if $v=0$. Cf. Definition~\ref{def:metric}. - A \emph{symplectic manifold} is a smooth manifold $M$ equipped with a closed differential 2-form $\omega$ such tht $\omega_q$ is a symplectic form on $T_q M$ for every $q\in M$. + A \emph{symplectic manifold} is a smooth manifold $M$ equipped with a closed differential 2-form $\omega$ such that $\omega_q$ is a symplectic form on $T_q M$ for every $q\in M$. \begin{enumerate} \item Prove that if a symplectic form exists, then $k=2n$ for some $n\in\N$, i.e., it must be an even number. \item Let $M$ be a smooth manifold. Define a $1$-form $\eta\in\Omega^1(T^*M)$ on the cotangent bundle of $M$ as