-
Notifications
You must be signed in to change notification settings - Fork 316
/
Basic.fs
108 lines (77 loc) · 3.53 KB
/
Basic.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
namespace Microsoft.Spark.Examples.Sql
open System
open Microsoft.Spark.Examples
open Microsoft.Spark.Sql
type Basic() =
member this.Run(args : string[]) =
match args with
| [| filePath |] ->
let spark = SparkSession.Builder().AppName("Hello F#").GetOrCreate()
let df = spark.Read().Json(filePath)
let schema = df.Schema()
printfn "%s" (schema.SimpleString)
for row in df.Collect() do
printfn "%s" (row.ToString())
df.Show()
df.PrintSchema()
df.Select("name", "age", "age", "name").Show()
df.Select(df.["name"], df.["age"] + 1).Show()
df.Filter(df.["age"].Gt(21)).Show()
df.GroupBy("age")
.Agg(Functions.Avg(df.["age"]),
Functions.Avg(df.["age"]),
Functions.CountDistinct(df.["age"], df.["age"]))
.Show()
// SQL example.
df.CreateOrReplaceTempView("people")
// Registering UDF for SQL expression.
let sqlDf = spark.Sql("SELECT * FROM people")
sqlDf.Show()
spark.Udf().Register<Nullable<int>, string, string>(
"my_udf",
fun age name ->
name + " with " + (if age.HasValue then (string)(age.Value) else "null"))
let sqlDf = spark.Sql("SELECT my_udf(*) FROM people")
sqlDf.Show()
// Using UDF via data frames.
let addition = Functions.Udf<Nullable<int>, string, string>(
fun age name ->
name + " is " +
(if age.HasValue then (string)(age.Value + 10) else "0"))
df.Select(addition.Invoke(df.["age"], df.["name"])).Show()
// Chaining example:
let addition2 = Functions.Udf<string, string>(fun str -> "hello " + str + "!")
df.Select(addition2.Invoke(addition.Invoke(df.["age"], df.["name"]))).Show()
// Multiple UDF example:
df.Select(addition.Invoke(df.["age"], df.["name"]), addition2.Invoke(df.["name"]))
.Show()
// Joins.
let joinedDf = df.Join(df, "name")
joinedDf.Show()
let joinedDf2 = df.Join(df, ["name"; "age"] |> List.toSeq)
joinedDf2.Show()
let joinedDf3 = df.Join(df, df.["name"].EqualTo(df.["name"]), "outer")
joinedDf3.Show()
// Union of two data frames
let unionDf = df.Union(df)
unionDf.Show()
// Add new column to data frame
df.WithColumn("location", Functions.Lit("Seattle")).Show()
// Rename existing column
df.WithColumnRenamed("name", "fullname").Show()
// Filter rows with null age
df.Filter(df.["age"].IsNull()).Show()
// Fill null values in age column with -1
df.Na().Fill(-1L, ["age"]).Show()
// Drop age column
df.Drop(df.["age"]).Show()
spark.Stop()
0
| _ ->
printfn "Usage: Basic <path to SPARK_HOME/examples/src/main/resources/people.json>"
1
interface IExample with
member this.Run (args) = this.Run (args)