Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

what is the correct way to load data in recordIO format to Spark dataframe? #130

Open
JackLinJack opened this issue Nov 14, 2020 · 1 comment

Comments

@JackLinJack
Copy link

System Information

EMR notebook pyspark

Describe the problem

Able to use the below command to save spark dataframe to pbr file on s3

myDataFrame.write
    .format("sagemaker")
    .option("labelColumnName", "myLabelColumn")
    .option("featuresColumnName", "myFeaturesColumn")
    .save("s3://my-s3-bucket/my-s3-prefix")

However, when I tried to load the pbr file to create spark dataframe and do some simple processing.

recordIO_df.filter().count()

I got the below error.

An error occurred while calling o211.save.
: org.apache.spark.SparkException: Job aborted.
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:198)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
	at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
	at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
	at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:156)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
	at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
	at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
	at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
	at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
	at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
	at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
	at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
	at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
	at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
	at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271)
	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:229)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
	at py4j.Gateway.invoke(Gateway.java:282)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.GatewayConnection.run(GatewayConnection.java:238)
	at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.UnsupportedOperationException: buildReader is not supported for SageMaker
	at org.apache.spark.sql.execution.datasources.FileFormat$class.buildReader(FileFormat.scala:113)
	at com.amazonaws.services.sagemaker.sparksdk.protobuf.SageMakerProtobufFileFormat.buildReader(SageMakerProtobufFileFormat.scala:41)
	at org.apache.spark.sql.execution.datasources.FileFormat$class.buildReaderWithPartitionValues(FileFormat.scala:129)
	at com.amazonaws.services.sagemaker.sparksdk.protobuf.SageMakerProtobufFileFormat.buildReaderWithPartitionValues(SageMakerProtobufFileFormat.scala:41)
	at org.apache.spark.sql.execution.FileSourceScanExec.inputRDD$lzycompute(DataSourceScanExec.scala:309)
	at org.apache.spark.sql.execution.FileSourceScanExec.inputRDD(DataSourceScanExec.scala:305)
	at org.apache.spark.sql.execution.FileSourceScanExec.inputRDDs(DataSourceScanExec.scala:327)
	at org.apache.spark.sql.execution.FilterExec.inputRDDs(basicPhysicalOperators.scala:121)
	at org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:41)
	at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:627)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:156)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
	at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
	at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:143)
	... 32 more

Traceback (most recent call last):
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/readwriter.py", line 738, in save
    self._jwrite.save(path)
  File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
    answer, self.gateway_client, self.target_id, self.name)
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
    format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o211.save.
: org.apache.spark.SparkException: Job aborted.
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:198)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
	at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
	at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
	at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:156)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
	at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
	at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
	at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
	at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
	at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
	at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
	at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
	at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
	at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
	at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271)
	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:229)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
	at py4j.Gateway.invoke(Gateway.java:282)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.GatewayConnection.run(GatewayConnection.java:238)
	at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.UnsupportedOperationException: buildReader is not supported for SageMaker
	at org.apache.spark.sql.execution.datasources.FileFormat$class.buildReader(FileFormat.scala:113)
	at com.amazonaws.services.sagemaker.sparksdk.protobuf.SageMakerProtobufFileFormat.buildReader(SageMakerProtobufFileFormat.scala:41)
	at org.apache.spark.sql.execution.datasources.FileFormat$class.buildReaderWithPartitionValues(FileFormat.scala:129)
	at com.amazonaws.services.sagemaker.sparksdk.protobuf.SageMakerProtobufFileFormat.buildReaderWithPartitionValues(SageMakerProtobufFileFormat.scala:41)
	at org.apache.spark.sql.execution.FileSourceScanExec.inputRDD$lzycompute(DataSourceScanExec.scala:309)
	at org.apache.spark.sql.execution.FileSourceScanExec.inputRDD(DataSourceScanExec.scala:305)
	at org.apache.spark.sql.execution.FileSourceScanExec.inputRDDs(DataSourceScanExec.scala:327)
	at org.apache.spark.sql.execution.FilterExec.inputRDDs(basicPhysicalOperators.scala:121)
	at org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:41)
	at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:627)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:156)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
	at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
	at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
	at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:143)
	... 32 more

Is there any way to create spark dataframe from reading pbr file?

@icywang86rui
Copy link
Contributor

Reading the converted pbr file is not currently supported. Can I ask what is your use case for this?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

2 participants