forked from confluentinc/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
MapFunctionLambdaExample.java
165 lines (150 loc) · 8.43 KB
/
MapFunctionLambdaExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.Consumed;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.Produced;
import java.util.Properties;
/**
* Demonstrates how to perform simple, state-less transformations via map functions. See also the
* Scala variant {@code MapFunctionScalaExample}.
* <p>
* Use cases include e.g. basic data sanitization, data anonymization by obfuscating sensitive data
* fields (such as personally identifiable information aka PII). This specific example reads
* incoming text lines and converts each text line to all-uppercase.
* <p>
* Note: This example uses lambda expressions and thus works with Java 8+ only.
* <p>
* <br>
* HOW TO RUN THIS EXAMPLE
* <p>
* 1) Start Zookeeper and Kafka. Please refer to <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>.
* <p>
* 2) Create the input and output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --create --topic TextLinesTopic \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic UppercasedTextLinesTopic \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic OriginalAndUppercasedTopic \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* }</pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be {@code bin/kafka-topics.sh ...}.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href='https://github.com/confluentinc/kafka-streams-examples#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-5.2.1-standalone.jar io.confluent.examples.streams.MapFunctionLambdaExample
* }
* </pre>
* 4) Write some input data to the source topic (e.g. via {@code kafka-console-producer}). The already
* running example application (step 3) will automatically process this input data and write the
* results to the output topics.
* <pre>
* {@code
* # Start the console producer. You can then enter input data by writing some line of text, followed by ENTER:
* #
* # hello kafka streams<ENTER>
* # all streams lead to kafka<ENTER>
* #
* # Every line you enter will become the value of a single Kafka message.
* $ bin/kafka-console-producer --broker-list localhost:9092 --topic TextLinesTopic
* }</pre>
* 5) Inspect the resulting data in the output topics, e.g. via {@code kafka-console-consumer}.
* <pre>
* {@code
* $ bin/kafka-console-consumer --topic UppercasedTextLinesTopic --from-beginning \
* --bootstrap-server localhost:9092
* $ bin/kafka-console-consumer --topic OriginalAndUppercasedTopic --from-beginning \
* --bootstrap-server localhost:9092 --property print.key=true
* }</pre>
* You should see output data similar to:
* <pre>
* {@code
* HELLO KAFKA STREAMS
* ALL STREAMS LEAD TO KAFKA
* }</pre>
* 6) Once you're done with your experiments, you can stop this example via {@code Ctrl-C}. If needed,
* also stop the Kafka broker ({@code Ctrl-C}), and only then stop the ZooKeeper instance ({@code Ctrl-C}).
*/
public class MapFunctionLambdaExample {
public static void main(final String[] args) {
final String bootstrapServers = args.length > 0 ? args[0] : "localhost:9092";
final Properties streamsConfiguration = new Properties();
// Give the Streams application a unique name. The name must be unique in the Kafka cluster
// against which the application is run.
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "map-function-lambda-example");
streamsConfiguration.put(StreamsConfig.CLIENT_ID_CONFIG, "map-function-lambda-example-client");
// Where to find Kafka broker(s).
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
// Specify default (de)serializers for record keys and for record values.
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.ByteArray().getClass().getName());
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
// Set up serializers and deserializers, which we will use for overriding the default serdes
// specified above.
final Serde<String> stringSerde = Serdes.String();
final Serde<byte[]> byteArraySerde = Serdes.ByteArray();
// In the subsequent lines we define the processing topology of the Streams application.
final StreamsBuilder builder = new StreamsBuilder();
// Read the input Kafka topic into a KStream instance.
final KStream<byte[], String> textLines = builder.stream("TextLinesTopic", Consumed.with(byteArraySerde, stringSerde));
// Variant 1: using `mapValues`
final KStream<byte[], String> uppercasedWithMapValues = textLines.mapValues(v -> v.toUpperCase());
// Write (i.e. persist) the results to a new Kafka topic called "UppercasedTextLinesTopic".
//
// In this case we can rely on the default serializers for keys and values because their data
// types did not change, i.e. we only need to provide the name of the output topic.
uppercasedWithMapValues.to("UppercasedTextLinesTopic");
// Variant 2: using `map`, modify value only (equivalent to variant 1)
final KStream<byte[], String> uppercasedWithMap = textLines.map((key, value) -> new KeyValue<>(key, value.toUpperCase()));
// Variant 3: using `map`, modify both key and value
//
// Note: Whether, in general, you should follow this artificial example and store the original
// value in the key field is debatable and depends on your use case. If in doubt, don't
// do it.
final KStream<String, String> originalAndUppercased = textLines.map((key, value) -> KeyValue.pair(value, value.toUpperCase()));
// Write the results to a new Kafka topic "OriginalAndUppercasedTopic".
//
// In this case we must explicitly set the correct serializers because the default serializers
// (cf. streaming configuration) do not match the type of this particular KStream instance.
originalAndUppercased.to("OriginalAndUppercasedTopic", Produced.with(stringSerde, stringSerde));
final KafkaStreams streams = new KafkaStreams(builder.build(), streamsConfiguration);
// Always (and unconditionally) clean local state prior to starting the processing topology.
// We opt for this unconditional call here because this will make it easier for you to play around with the example
// when resetting the application for doing a re-run (via the Application Reset Tool,
// http://docs.confluent.io/current/streams/developer-guide.html#application-reset-tool).
//
// The drawback of cleaning up local state prior is that your app must rebuilt its local state from scratch, which
// will take time and will require reading all the state-relevant data from the Kafka cluster over the network.
// Thus in a production scenario you typically do not want to clean up always as we do here but rather only when it
// is truly needed, i.e., only under certain conditions (e.g., the presence of a command line flag for your app).
// See `ApplicationResetExample.java` for a production-like example.
streams.cleanUp();
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
}