-
Notifications
You must be signed in to change notification settings - Fork 0
/
sphere.h
53 lines (43 loc) · 1.62 KB
/
sphere.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#ifndef SPHERE_H
#define SPHERE_H
#include "hittable.h"
#include "vec3.h"
class sphere : public hittable {
public:
sphere() {}
sphere(point3 cen, double r, shared_ptr<material> m)
: center(cen), radius(r), mat_ptr(m) {};
virtual bool hit(
const ray& r, double t_min, double t_max, hit_record& rec) const override;
public:
point3 center;
double radius;
shared_ptr<material> mat_ptr;
};
bool sphere::hit(const ray& r, double t_min, double t_max, hit_record& rec) const {
// Equation of the sphere in vector form is: (𝐏−𝐂)⋅(𝐏−𝐂)=𝑟^2; P(t) = A + tb
// Eqn to check if ray hits sphere: 𝑡^2𝐛⋅𝐛+2𝑡𝐛⋅(𝐀−𝐂)+(𝐀−𝐂)⋅(𝐀−𝐂)−𝑟^2=0
// Can use quadratic eqn, check for location of intersections
vec3 oc = r.origin() - center;
auto a = r.direction().length_squared(); // v • v = |v|^2
auto half_b = dot(oc, r.direction());
auto c = oc.length_squared() - radius*radius;
auto discriminant = half_b*half_b - a*c;
if (discriminant < 0) return false;
auto sqrtd = sqrt(discriminant);
// Find the nearest root that lies in the acceptable range.
auto root = (-half_b - sqrtd) / a;
if (root < t_min || t_max < root) {
root = (-half_b + sqrtd) / a;
if (root < t_min || t_max < root)
return false;
}
// Store useful info in hit_record
rec.t = root;
rec.p = r.at(rec.t);
vec3 outward_normal = (rec.p - center) / radius;
rec.set_face_normal(r, outward_normal);
rec.mat_ptr = mat_ptr;
return true;
}
#endif